

Grade 7/8 Math Circles

November 28/29/30/December 1, 2022
Jeopardy

Jeopardy

Recursive Sequences	Math Logic	Radians	Gauss Prep	Induction	Modular Arithmetic	Complex Numbers
100	100	100	100	100	100	100
200	200	200	200	200	200	200
300	300	300	300	300	300	300
400	400	400	400	400	400	400
500	500	500	500	500	500	500

Find an infinite sequence which is both an arithmetic sequence and a geometric sequence.

Find the next 2 numbers in the following pattern: 1, 21, 312, 4213, ...

The sequence t_1, t_2, t_3, \dots is geometric.

If
$$t_1 = 3$$
 and $t_4 = -24$, find t_{10} .

Let $a_1, a_2, a_3, ...$ be an arithmetic sequence with first term 7 and common difference 13. Find n such that $a_n = 2022$.

Let a_n be the number of ways one can climb an n-step staircase by going up either one or two steps at a time. Fill out the following table.

n	1	2	3	4	5	6	7	8
$\overline{a_n}$	1	2						

Recursive Sequences - 100 Answer

The sequence of 0's: 0, 0, 0, 0, ...

Recursive Sequences - 200 Answer

 $1, 21, 312, 4213, 53124, 642135, \dots$

Recursive Sequences - 300 Answer

$$t_{10} = -1536$$

Recursive Sequences - 400 Answer

$$n = 156$$

Recursive Sequences - 500 Answer

n	1	2	3	4	5	6	7	8	
$\overline{a_n}$	1	2	3	5	8	13	21	34	

- I will eat either pizza or spaghetti for dinner.
- I will not eat spaghetti for dinner.

What would I have for dinner?

What is the mathematical symbols for "or", "and", "not", in that order?

Make a truth table for $P \vee Q$.

Find the simplest equivalent logical expression of $\neg(\neg\neg P \lor \neg Q) \land Q$.

Four boys, Joshua, Daniel, Nicholas, and Ryan, are at home to watch some movies. Who does like Action movies?

- 1. Joshua is at one of the ends.
- 2. The boy wearing the Black shirt is somewhere to the left of the youngest boy (11-year-old).
- 3. Joshua likes Horror movies.
- 4. The 14-year-old boy is at the third position.
- 5. The boy wearing the Red shirt is somewhere between the 13-year-old boy and the one who likes Action movies, in that order.
- 6. Daniel likes Thriller movies.
- 7. The boy who is going to eat Cookies is at one of the ends.
- 8. The boy wearing the Black shirt is exactly to the left of the one who likes Thriller movies.
- 9. The boy who is going to eat Crackers is exactly to the right of the boy who likes Comedy movies.
- 10. The boy wearing the Red shirt is somewhere between the boy who is going to eat Popcorn and Nicholas, in that order.
- 11. At one of the ends is the boy who likes Thriller movies.
- 12. Nicholas is somewhere between Joshua and Daniel, in that order.
- 13. At the first position is the boy wearing the Green shirt.

(Taken from https://www.brainzilla.com/)

Answer

Math Logic - 100 Answer

Pizza!

Math Logic - 200 Answer

$$\vee, \wedge, \neg$$

Math Logic - 300 Answer

P	Q	$P \lor Q$
T	Т	T
$\mid T \mid$	\mathbf{F}	Γ
F	Τ	Γ
F	\mathbf{F}	\mathbf{F}

Math Logic - 400 Answer

$$\neg P \land Q$$

Math Logic - 500 Answer

Nicholas

Let r be the radius, let d be the diameter, let C be the circumference, and let A be the area.

- a) What is the formula for the circumference of a circle?
- b) What is the formula for the area of a circle?

Why was 360° chosen to be the number of degrees in a full circle? List at least two theories.

Convert 20° to radians.

Calculate the arc length of the sector with radius 28 cm and a central angle of $\frac{27\pi}{14}$ radians.

Calculate the sector area of the sector with radius 11 mm and a central angle of $\frac{4\pi}{3}$ radians.

<u>Answer</u>

Radians - 100 Answer

a)
$$C = 2\pi r$$
 or $C = \pi d$

b)
$$A = \pi r^2$$

Radians - 200 Answer

- Highly composite
- Solar and lunar years
- Sexagesimal (base 60) number system and equilateral triangles

Radians - 300 Answer

$$20^{\circ} = \frac{\pi}{9} \text{ radians}$$

Radians - 400 Answer

 $arc length = 54\pi cm$

Radians - 500 Answer

sector area =
$$\frac{242\pi}{3}$$
 mm²

In the diagram, the size of $\angle ACB$ is

(A) 57° (B) 37° (C) 47°

(D) 60° (E) 17°

(Source: 2005 Gauss (Grade 7), #8)

The diagonals have been drawn in the square shown. The area of the shaded region of the square is

(A) 4 cm^2 (B) 8 cm^2 (C) 16 cm^2

(D) 56 cm^2 (E) 64 cm^2

(Source: 2014 Gauss (Grade 7), #12)

How many positive whole numbers, including 1, divide exactly into both 40 and 72?

(A) 9 (B) 12 (C) 4

(D) 2

(E) 5

(Source: 2007 Gauss (Grade 7), #15)

There are several groups of six integers whose product is 1. Which of the following cannot be the sum of such a group of six integers?

(A) -6 (B) -2 (C) 0 (D) 2

(E) 6

(Source: 2018 Gauss (Grade 7), #18)

Gauss Prep - 500

In the addition shown, P and Q each represent single digits, and the sum is 1PP7. What is P + Q?

(Source: 2013 Gauss (Grade 7), #21)

Gauss Prep - 100 Answer

(B)

Gauss Prep - 200 Answer

Gauss Prep - 300 Answer

Gauss Prep - 400 Answer

Gauss Prep - 500 Answer

Let $t_1, t_2, ...$ be a sequence such that $t_{n+1} = t_n + 1$ for all natural numbers n. Find $t_8 - t_1$.

Find all $n \in \mathbb{N}$ such that $2^n \leq n^2$.

Compute the sum of the first 50 odd positive integers:

$$1 + 3 + 5 + \dots + 97 + 99$$

Find all natural numbers n such that a $3 \times n$ grid of squares can be tiled using triominoes. Recall: a triomino is an L-shaped tile (see below).

Let $a_1, a_2, a_3, ...$ be a sequence of positive real numbers defined by $a_1 = 1$ and $a_{n+1} = \sqrt{a_n + 2}$ for $n \ge 1$. True or False:

- a) $a_2 \le 2$
- b) For all positive real numbers $x \leq 2$, $\sqrt{x+2} \leq 2$.
- c) $a_n \leq 2$ for all $n \in \mathbb{N}$.

Induction - 100 Answer

$$t_8 - t_1 = 7$$

Induction - 200 Answer

$$n = 2, 3, 4$$

Induction - 300 Answer

$$50^2 = 2500$$

Induction - 400 Answer

All even natural numbers n.

Induction - 500 Answer

- a) True.
- b) True.
- c) True.

What is the remainder of $-347 \div 5$?

Is 11 congruent to 87 modulo 3?

What is the last digit of $3829^2 \times (2891^{92} - 47728 + 2692213^3)$?

What is the remainder when $(189^5 + 3417^{283}) \times 164^2$ is divided by 17?

- a) If today is Tuesday, what day is it in 589 days?
- b) If today is Friday, what day was it 264 days ago?

Modular Arithmetic - 100 Answer

3

Modular Arithmetic - 200 Answer

No

Modular Arithmetic - 300 Answer

0

Modular Arithmetic - 400 Answer

13

Modular Arithmetic - 500 Answer

- a) Wednesday
- b) Sunday

What is the imaginary part of the number 0?

Calculate/simplify i^{77} .

Calculate
$$(-5+7i)\times(2-3i)$$

Calculate
$$\frac{(-5+7i)}{(2-3i)}$$

Find solutions of the quadratic equation $2x^2 + 4x + 7 = 0$.

Complex Numbers - 100 Answer

0

Complex Numbers - 200 Answer

i

Complex Numbers - 300 Answer

$$11 + 29i$$

Complex Numbers - 400 Answer

$$\frac{-31-i}{13}$$

Complex Numbers - 500 Answer

$$-1 \pm \frac{\sqrt{10}}{2}i$$